

4 al 7 de octubre | 2011

Mar del Plata | Buenos Aires ARGENTINA

Ciencia y tecnología: pilares del desarrollo ganadero sustentable

"La Ganadería Argentina y la generación de nuevos conocimientos para el agregado de valor".

Gases de efecto invernadero y calentamiento global. Desafíos para la ganadería

Ing. Agr. Roberto Rubio
PROANVET

Departamento de Producción Animal
Facultad de Ciencias Veterinarias
UNCPBA

9 a 10 mil millones

Número de personas en el mundo dentro de este siglo.

Pero

a las tasas actuales ese numero estaría entre 10 y 12 o incluso 16 mil millones.

Además

La población está seriamente afectada por el cambio climático.

¿En que nos afecta el Cambio Climático?

Los mejores augurios nos dicen que los cambios tendrán efectos fantásticos sobre:

Aspectos sociales, Aspectos ambientales y Aspectos Comerciales.

La población crea un enorme stress sobre:

Los alimentos

Agua

Incentiva la perdida de áreas silvestres

Aumenta la presión sobre la biodiversidad.

Acelerará la degradación de los sistemas naturales.

Y todo esto ocurrirá en la medida que el mundo siga los *modelos de desarrollo* presentes hasta hoy.

Los Modelos Actuales

- Consumo
- Capital Intensivo
- Energía Intensivos y
- Crecimiento Intensivos

No concuerda con un Planeta Finito

Los Nuevos Modelos Productivos deben considerar que:

- 1. La cuestión del cambio climático crece en importancia.
- 2. Que se asumen compromisos y acciones de reducción de emisión y contaminación a nivel Mundial.
- 3. Cada vez más países adoptan medidas ambientales para contrarrestar los efectos adversos del cambio climático y ciertos países ¹ aumentaron la presión para tomar medidas de política ambiental interna.
- 4. Y finalmente la cuestión de la vinculación entre política comercial y cambio climático ha adquirido una nueva dimensión.

¹ Estados Unidos, UE, N. Zelanda, Australia,

Las negociaciones de Cambio Climático deberían resultar en un consenso global sobre:

- 1. acciones de cooperación a largo plazo;
- 2. los compromisos de mitigación del cambio climático;
- 3. la adaptación a las medidas de mitigación;
- 4. el desarrollo y la transferencia de tecnología; y
- 5. los recursos financieros.

2009 – Previo a Copenhague

Las negociaciones de Cambio Climático

COP Bali 2008

COP Copenhague 2009

COP Cancun 2010

... camino a...

COP Durban 2011

El comercio internacional y el CC

- i. Aranceles aduaneros a bienes favorables o perjudiciales para el cambio climático.
- ii. Pagos en frontera en función del método y del proceso productivo.
- iii. Derecho antidumping ecológico y derecho compensatorio por subsidios ambientales implícitos.
- iv. Subsidios internos a la producción e innovación.
- v. Requisitos de acceso bajo la forma de normas técnicas y requisitos de información.
- vi. Condicionalidades para recibir beneficios comerciales.

MAS

instrumentos, argumentos y ámbitos de aplicación tendiendo a

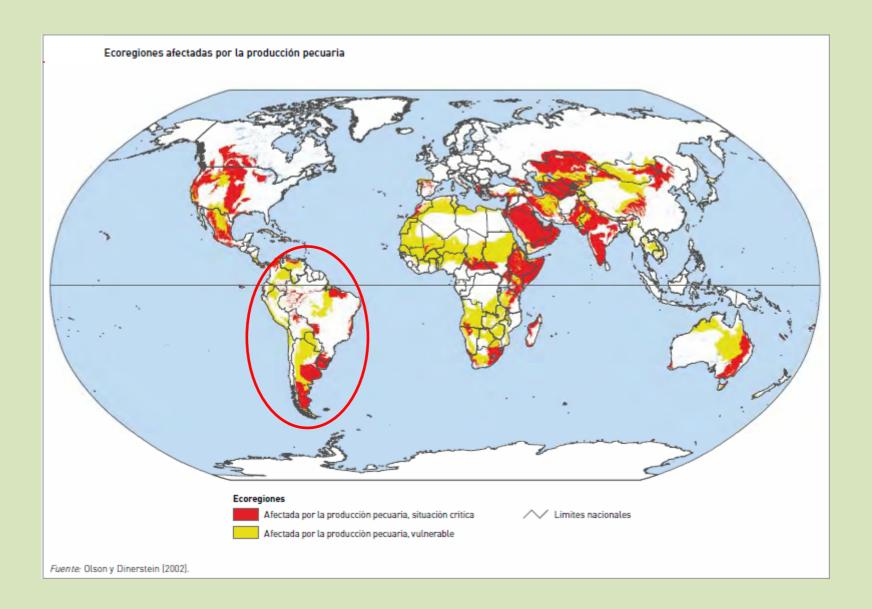
disponible a quienes fijan

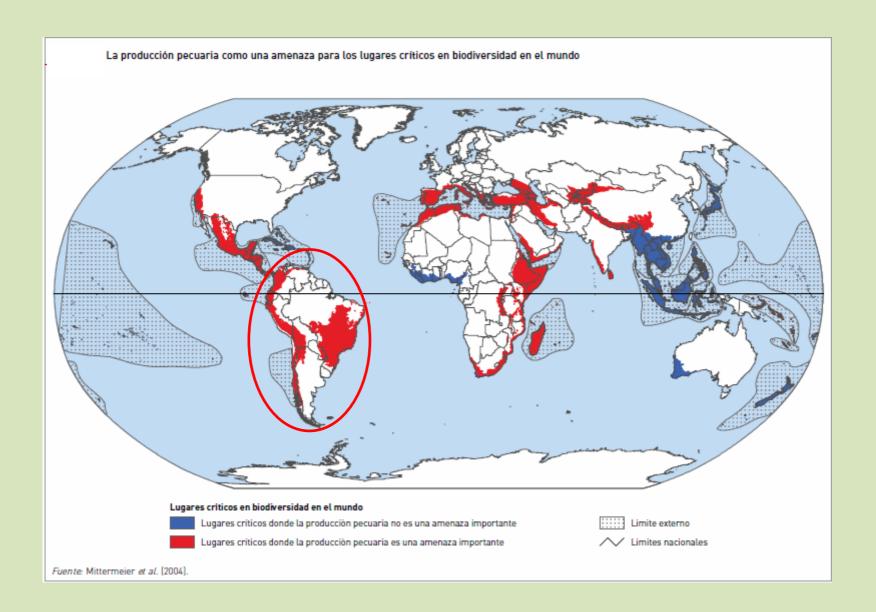
la política comercial.

Empleo creciente de **normas privadas** que, bajo la forma de **requisitos voluntarios** establecen las **características de los productos** y de sus **procesos productivos**.

Sumado a la posibilidad de *Fuga de Carbono*

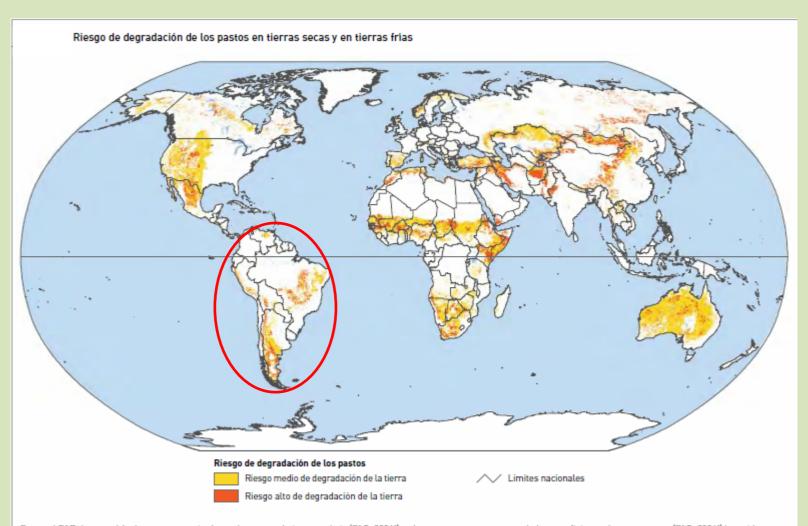
LA GANADERÍA EN EL MARCO DE LA AMENAZA AMBIENTAL


Este es un muy sucinto resumen de las condiciones en donde se desarrolla la ganadería.

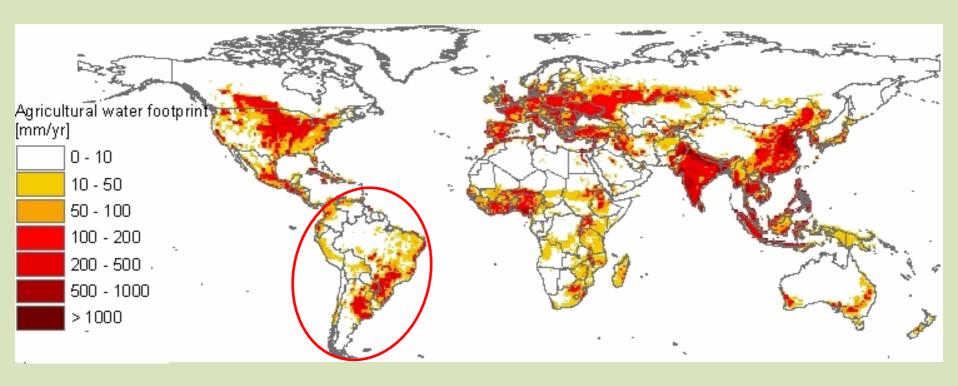

¿Cuales son las amenazas que le realizan?

Y que debemos tener en cuenta...

Amenazas de la Ganadería

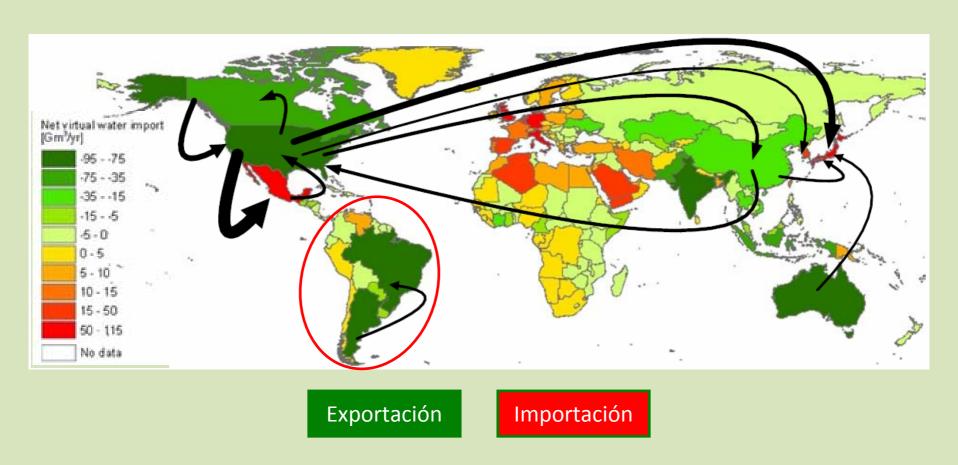

- Biodiversidad
- Degradación del Suelo
- Uso de Agua
- Atmosfera y Clima

Amenazas de la Ganadería


- Biodiversidad
- Degradación del Suelo
- Uso de Agua
- Atmosfera y Clima

Fuente: LEAD. Las cuadriculas con una aptitud para los pastos baja o muy baja (FAO, 2006f) y al menos una tercera parte de la superficie usada como pastos (FAO, 2006f) han sido asignadas a la categoria "riesgo alto", mientras que las cuadriculas con una aptitud para los pastos media (FAO, 2006f) y al menos un tercio de la superficie usado como pasto [FAO, 2006f] se han asignado a la categoría "riesgo medio". Las categorías de riesgo de degradación alto y medio han sido asignadas a cuadrículas con población bovina (Mapa 18).

Amenazas de la Ganadería


- Biodiversidad
- Degradación del Suelo
- Uso de Agua
- Atmosfera y Clima

Huella de agua de diferentes productos agrícolas

	Litros / kg L	itros / kcal	Litros / gramo proteína	Litros / gramo grasa
Caña de Azucar	197	0.69	0.0	0.0
Vegetales	322	1.34	26	154
Raíces	387	0.47	31	226
Frutas	962	2.09	180	348
Cereales	1644	0.51	21	112
Oleaginosas	2364	0.81	16	11
Nueces	9063	3.63	139	47
Leche	1020	1.82	31	33
Huevos	3265	2.29	29	33
Carne de Pollo	4325	3.00	34	43
Manteca	5553	0.72	0.0	6.4
Carne de Cerdo	5988	2.15	57	23
Carne Ovina y Caprina	8763	4.25	63	54
Carne Bovina	15415	10.19	112	153

Importación/Exportación de Agua

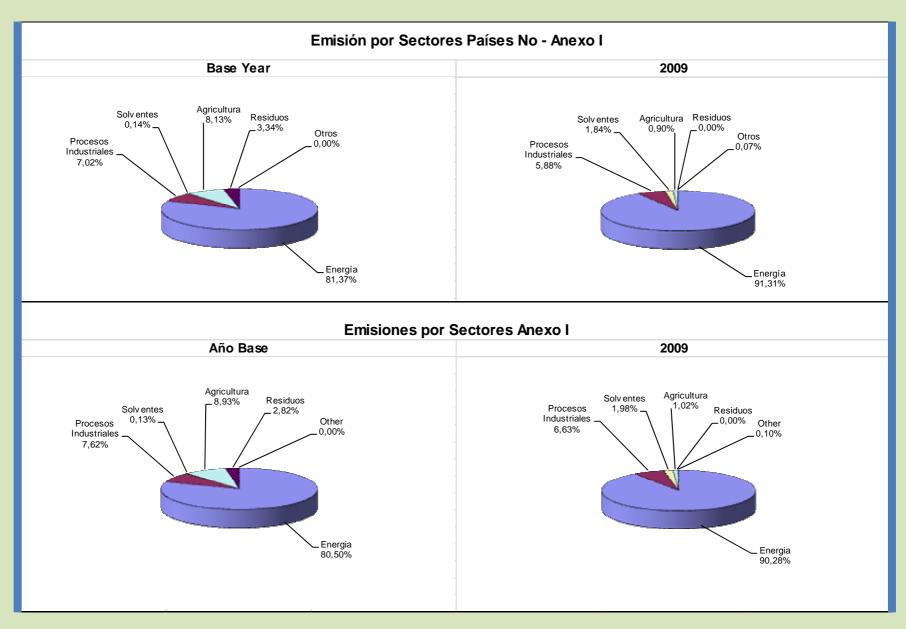
Mekonnen, M.M. and Hoekstra, A.Y. (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO LAE, Delft, the Netherlands .http://www.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf

Amenazas de la Ganadería

- Biodiversidad
- Degradación del Suelo
- Uso de Agua
- Atmosfera y Clima

CONTEXTO: GANADERÍA Y LOS GASES DE EFECTO INVERNADERO

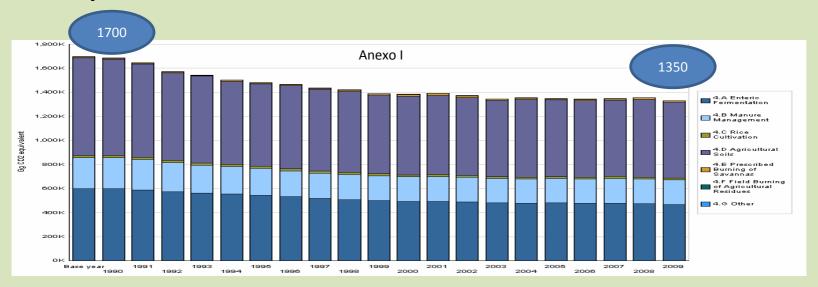
GEIs = Cambio Climático

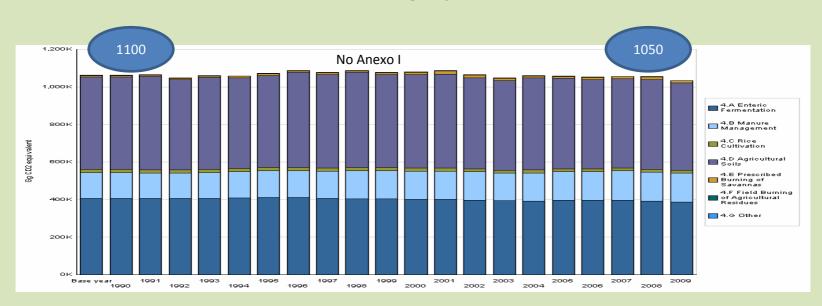

2005 – ARGENTINA Actividades Habilitantes para la 2ª Comunicación Nacional del Gobierno de la República Argentina a las Partes de la Convención Marco de las Naciones Unidas sobre Cambio Climático. TF 51287/AR PEDIDO DE PROPUESTAS PP No. C5b . *Mitigación de Emisiones a través de la Reducción de las Emisiones de Metano Entérico* Informe final. Mayo de 2006.

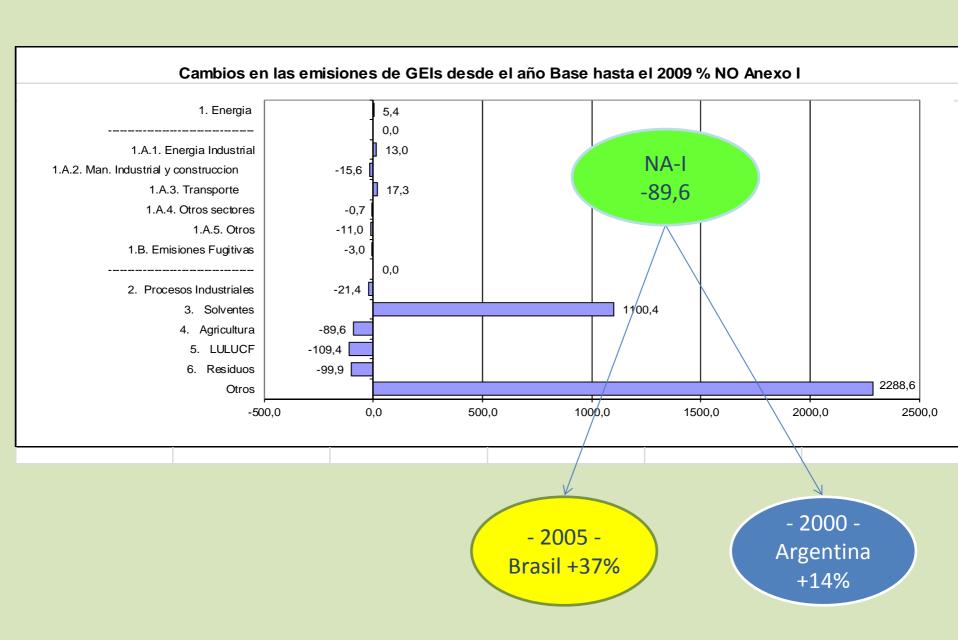
Total de Gases Producidos - 2009 –					
Mill	ones de G	g			
Cambio del Uso de la Tierra					
CON SIN					
Anexo - I 14,6 16,9					
No Anexo - I 11,9 13,3					

Sectores en que se divide el Inventario de GEIs					
1 Energía - Incluye Transporte					
2 Procesos Industriales					
3 Solventes					
4 Agricultura					
5 Cambio del Uso de la Tierra y Forestación					
6 Residuos					
7 Otros					

Sectores en que se divide el Inventario de GEIs Países Anexo – I Países No Anexo – I -


¿Cómo se distribuye esa Producción de GEIs?


Mirando específicamente al Sector Agropecuario


¿Cómo se Redujo la Producción de GEIs?

Sector Agropecuario

¿Cómo Nos comportamos Nosotros en esa Reducción de GEIs?

Distribución de Emisiones de GEIs en Nuestra Región - 1994 -

País	MilL de Gg	%			
Pais	Mill de Gg Total por	CO_2	CH_4	N_2O	
Mundial	100%		17%	10%	

Distribución de Emisiones de GEIs en Nuestra Región - 1994 -

Doíc	Mill. de Gg Total por	%		
País	וטנמו טטו	CO_2	CH_4	N_2O
Mundial	100%	73%	17%	10%
Total Región	4,2%	52%	27%	22%
Brasil				
Argentina				
Paraguay				
Uruguay				

Distribución de Emisiones de GEIs en Nuestra Región - 1994 -

Doío	Mill. de Gg Total por	%		
País		CO_2	CH_4	N_2O
Mundial	100%	73%	17%	10%
Total Región	4,25%	52%	27%	22%
Brasil	3,23%	54%	25%	21%
Argentina	0,80%	48%	29%	23%
Paraguay	0,11%	49%	28%	24%
Uruguay	0,11%	18%	41%	41%

Grupo UNICEN.. Barbaro Nestor, Gratton, Roberto, Rubio, Roberto, Reborí, Alfredo, 2005 – ARGENTINA Actividades Habilitantes para la 2ª Comunicación Nacional del Gobierno de la República Argentina a las Partes de la Convención Marco de las Naciones Unidas sobre Cambio Climático. TF 51287/AR PEDIDO DE PROPUESTAS PP No. C5b. Mitigación de Emisiones a través de la Reducción de las Emisiones de Metano Entérico Informe final. Mayo de 2006.

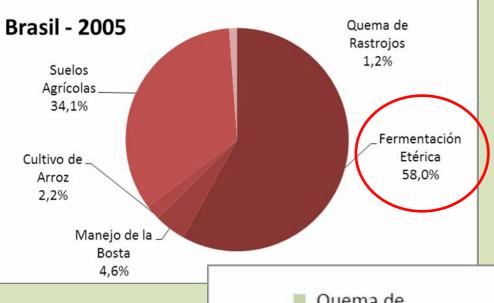
¿Qué sectores emiten esos GEIs – Sin el Cambio en Uso de la Tierra? **Emisiones por Sector - Brasil** 1990 2005 Otros 0,00% Otros Residuos Energía Residuos 0,00% 4,76%_ 33,23% 4,96% Energía 38,11% Procesos Agricultura Agricultura_ Industriales 52,69% 48,19% **Procesos** 9,11% Solventes Solventes Industriales 0.00% 0.00% 8.95% inisiones de Gases por Sector - Argentina Mundo 2000 10% Argentina - Año 2000 Otros Residuos Residuos Otros 0.00% 4.06% 4,97%_ 0.00% Energía Energía 44,84% 46,79% Agricultura Agricultura 44,30% 47,42% **Procesos Procesos** Solventes Industriales Industriales Solventes 0,00% 3,94% 3,67% 0,00%

Brasil Cambio en el Uso de la Tierra Gg 1.329.050

Emisión de GEIs Ordenada por el Total del Emisiones Ultimo Inventario

Orden			<u>-</u>			
	País	Agricultura Base	2009	Total Base con LULUCF	Total 2009	%Agric
1	United States of America	383.599,09	419.347,29	5.320.257,47	5.618.164,99	7,5%
2	European Union (27)	610.460,07	476.041,54	5.244.183,54	4.182.393,66	11,4%
3	European Union (15)	441.170,62	378.864,34	4.035.815,29	3.430.388,89	11,0%
4	Brasil	303.776,00	415.771,00	1.389.137,72	2.191.878,88	19,0%
5	Russian Federation	317.286,52	142.374,66	3.429.061,27	1.502.792,57	9,5%
6	Japan	31.294,64	25.402,11	1.196.975,91	1.137.689,69	2,2%
7	Germany	86.740,21	72.702,19	1.216.726,53	937.261,50	7,8%
8	Canada	46.866,32	55.857,95	522.932,13	677.952,79	8,2%
9	Australia	86.812,06	84.745,63	461.458,34	599.763,94	14,1%
10	United Kingdom of Great Britain and Northern Ireland	57.329,60	45.041,26	783.308,27	565.987,28	8,0%
11	France	109.304,76	96.290,70	526.288,14	458.482,79	21,0%
12	Italy	40.622,55	34.481,12	457.361,60	396.448,61	8,7%
13	Ukraine	103.269,97	33.393,74	861.500,11	351.232,38	9,5%
14	Poland	51.140,34	35.512,41	553.061,53	339.483,90	10,5%
15	Spain	37.743,39	38.712,71	264.110,03	338.920,47	11,4%
16	Turkey	29.776,81	25.695,93	142.158,73	287.119,55	8,9%
17	Argentina	109.569,02	124.919,39	216.291,39	238.702,90	52,3%
18	Netherlands	22.380,63	16.730,84	214.543,96	201.346,62	8,3%
19	Czech Republic	15.937,36	7.877,22	191.893,45	126.062,25	6,2%

¿Qué lugar ocupamos como Emisores de GEIs del sector Agrícola?

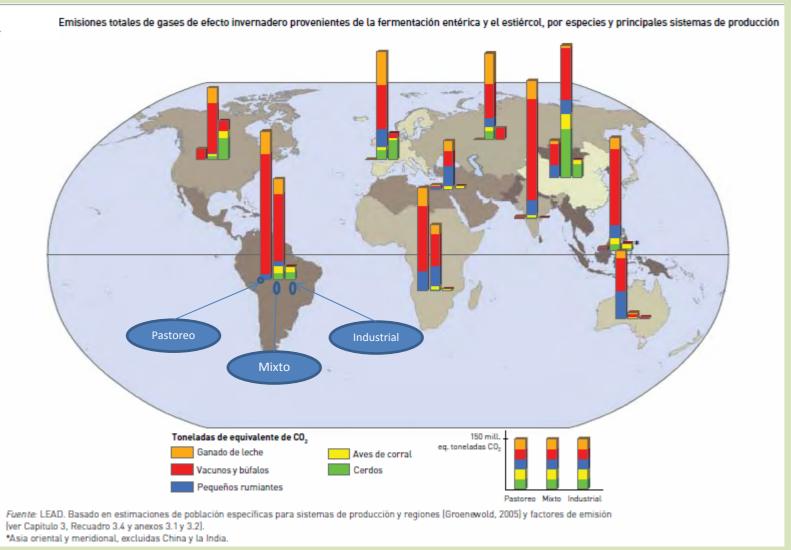

Emisión de GEIs Ordenada por el Total Emisiones Sector Agrícola

Orden			а рот от то		70 000to. 7 tg	
Orden	País	Total Agricultura	Agri 2009	Total Base con LULUCF	Total 2009	%Agric
1	European Union (27)	610.460,07	476.041,54	5.244.183,54	4.182.393,66	11,4%
2	United States of America	383.599,09	419.347,29	5.320.257,47	5.618.164,99	7,5%
3	Brasil	303.776,00	415.771,00	1.389.137,72	2.191.878,88	19,0%
4	European Union (15)	441.170,62	378.864,34	4.035.815,29	3.430.388,89	11,0%
5	Russian Federation	317.286,52	142.374,66	3.429.061,27	1.502.792,57	9,5%
6	Argentina	109.569,02	124.919,39	216.291,39	238.702,90	52,3%
7	France	109.304,76	96.290,70	526.288,14	458.482,79	21,0%
8	Australia	86.812,06	84.745,63	461.458,34	599.763,94	14,1%
9	Germany	86.740,21	72.702,19	1.216.726,53	937.261,50	7,8%
10	Canada	46.866,32	55.857,95	522.932,13	677.952,79	8,2%
11	United Kingdom of Great Britain and Northern Ireland	57.329,60	45.041,26	783.308,27	565.987,28	8,0%
12	Spain	37.743,39	38.712,71	264.110,03	338.920,47	11,4%
13	Poland	51.140,34	35.512,41	553.061,53	339.483,90	10,5%
14	Italy	40.622,55	34.481,12	457.361,60	396.448,61	8,7%
15	Ukraine	103.269,97	33.393,74	861.500,11	351.232,38	9,5%
16	New Zealand	30.277,53	32.810,52	35.661,04	43.881,06	74,8%
17	Turkey	29.776,81	25.695,93	142.158,73	287.119,55	8,9%
18	Japan	31.294,64	25.402,11	1.196.975,91	1.137.689,69	2,2%
19	Romania	48.265,56	25.205,70	250.559,45	94.294,89	26,7%

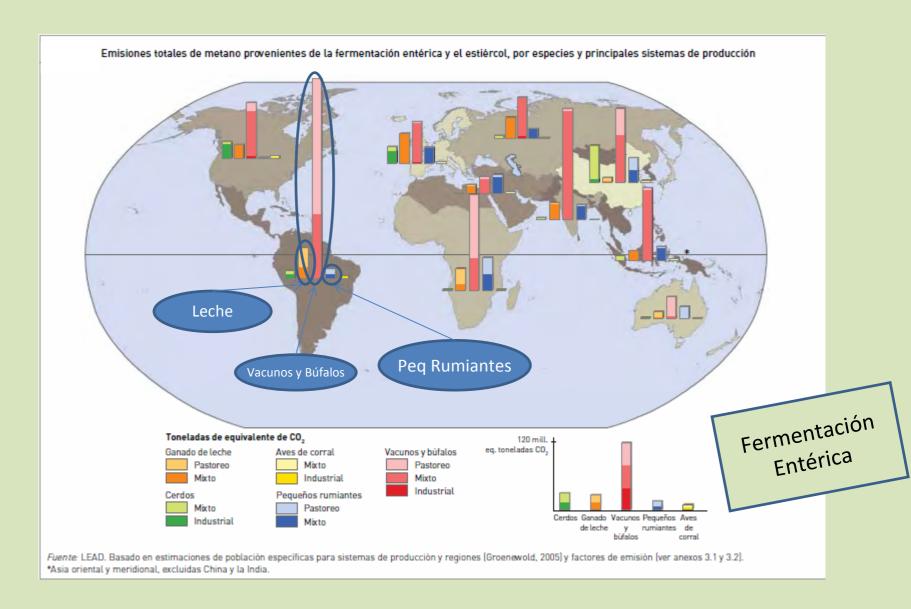
¿Qué Proporción Ocupan las Emisiones Agrícolas en las emisiones Totales?

Emisión de GEIs Ordenada por la proporción de emisiones Agrícolas

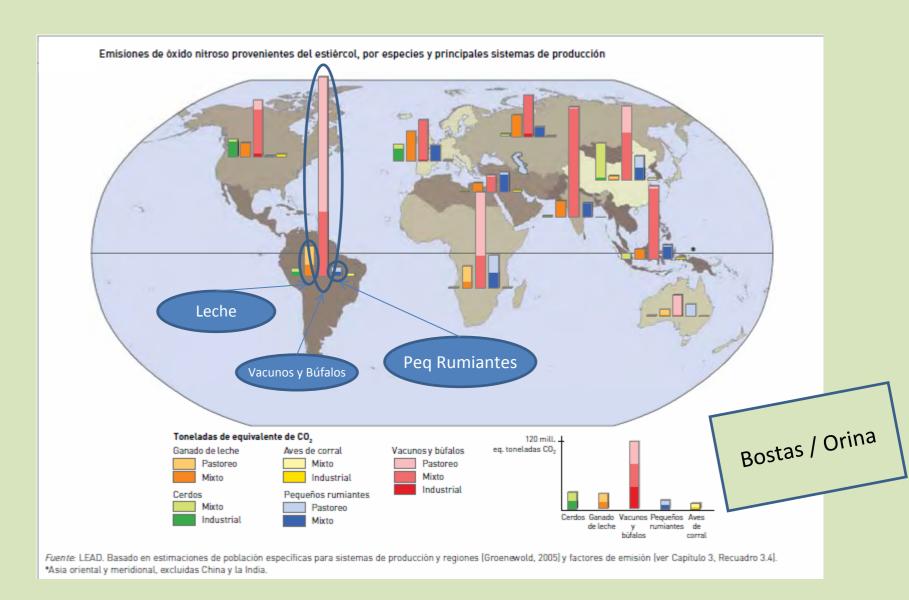
			mada per la pi			
Orden	País	Total Agricultura	Agri 2009	Total Base con LULUCF	Total 2009	%Agric
1	New Zealand	30.277,53	32.810,52	35.661,04	43.881,06	74,8%
2	Argentina	109.569,02	124.919,39	216.291,39	238.702,90	52,3%
3	Sweden	9.236,94	8.191,89	27.767,72	18.355,47	44,6%
4	Belarus	30.672,65	22.788,48	110.604,82	57.842,98	39,4%
5	Ireland	19.253,54	17.491,31	54.255,09	60.221,79	29,0%
6	Romania	48.265,56	25.205,70	250.559,45	94.294,89	26,7%
7	Lithuania	9.838,25	4.632,54	45.047,18	17.858,78	25,9%
8	Finland	6.658,45	5.721,35	55.325,75	25.777,89	22,2%
9	France	109.304,76	96.290,70	526.288,14	458.482,79	21,0%
10	Brasil	303.776,00	415.771,00	1.389.137,72	2.191.878,88	19,0%
11	Slovenia	2.218,06	1.996,27	12.540,89	10.880,92	18,3%
12	Croatia	4.378,46	3.314,47	24.506,36	20.153,43	16,4%
13	Norway	4.491,37	4.202,67	41.211,09	25.963,93	16,2%
14	Denmark	12.425,00	9.647,62	72.526,41	61.176,53	15,8%
15	Australia	86.812,06	84.745,63	461.458,34	599.763,94	14,1%
16	Estonia	3.026,20	1.302,89	30.636,98	9.802,27	13,3%
17	Hungary	17.549,53	8.309,69	111.788,09	63.641,23	13,1%
18	Bulgaria	18.978,64	6.177,13	110.336,39	47.711,16	12,9%
19	Portugal	8.036,00	7.796,39	50.090,74	60.488,03	12,9%

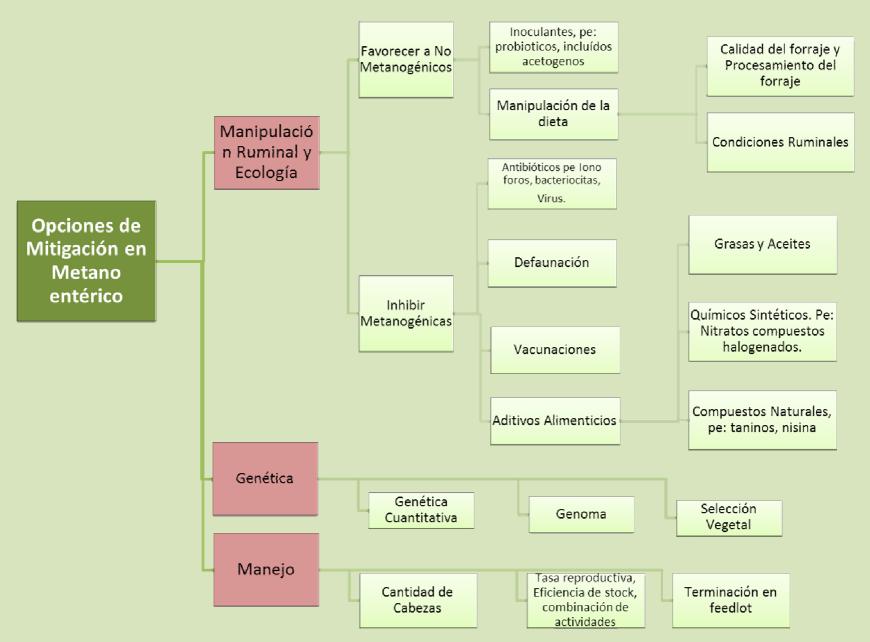


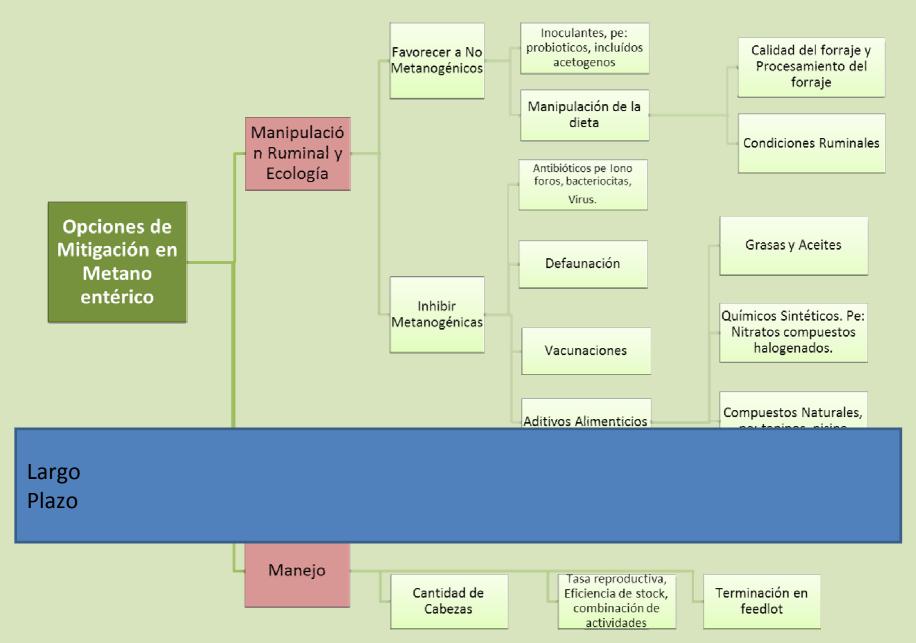
¿Cuáles y Cuánto son las Actividades Agropecuarias responsables de las emisiones de GEIs en Brasil y Argentina?

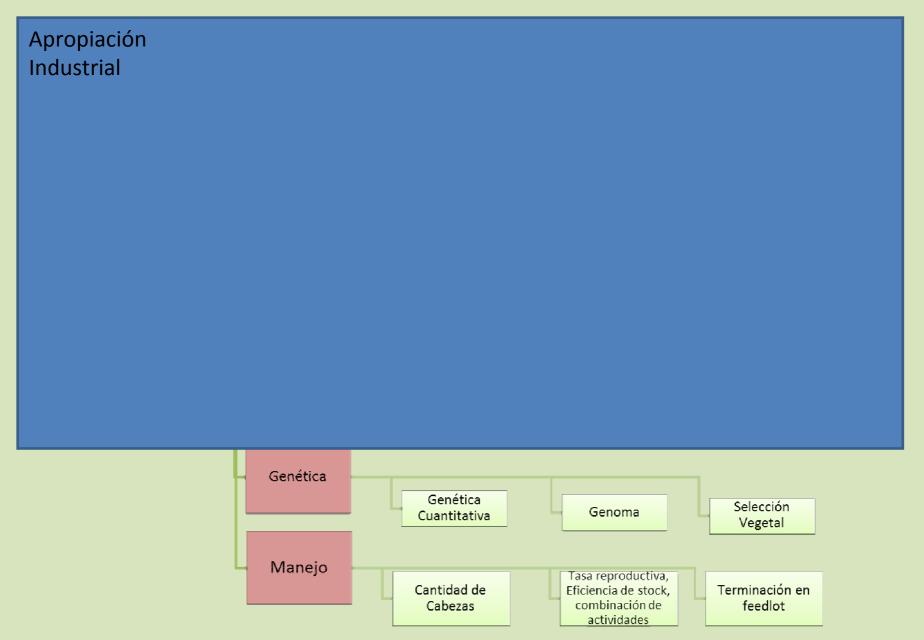


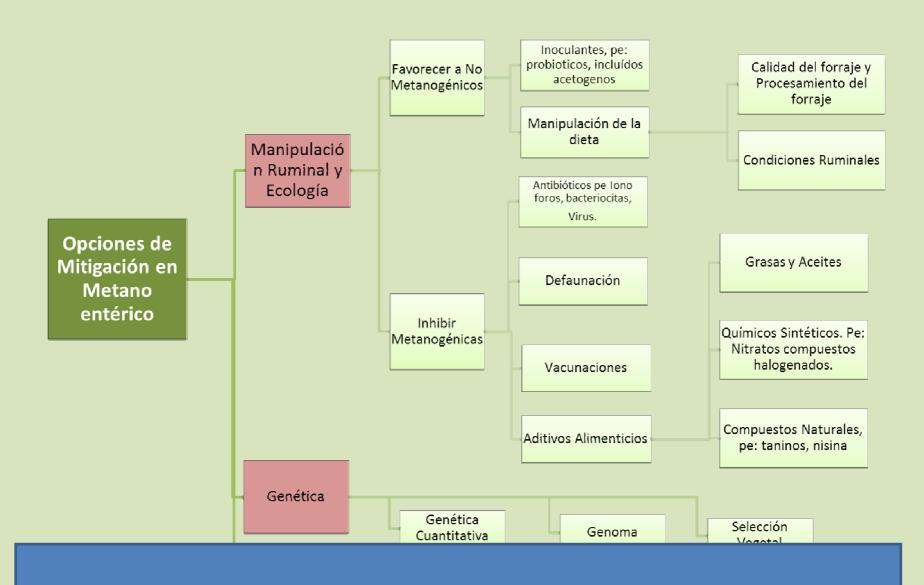
¿Cuales son los Sistemas Productivos Comprometidos en las Emisiones de GEIs?


Emisiones Totales de GEIs Por sistemas. Pastoreo – Mixto - Industrial


Emisiones de Metano Por sistemas.


Emisiones de Oxido Nitroso Por sistemas.


La Responsabilidad que nos Cabe en este Tema es Encontrar Mecanismos de Reducción


Cottle, D.J., Nolan, J.V. y Wiedemann, S.G.. 2011 "Ruminant enteric methane mitigation: a review". Animal Production Science, 2011, 51, 491-514

Cottle, D.J., Nolan, J.V. y Wiedemann, S.G.. 2011 "Ruminant enteric methane mitigation: a review". Animal Production Science, 2011, 51, 491-514

Cottle, D.J., Nolan, J.V. y Wiedemann, S.G.. 2011 "Ruminant enteric methane mitigation: a review". Animal Production Science, 2011, 51, 491-514

Grupo de Investigación en Bovinos para Carne, Departamento de Producción Animal

Horacio L. Gonda¹ (Director del Proyecto) - Guillermo D. Milano¹

María L. Bakker¹⁻ - Roberto A. Rubio¹ - María del Carmen Ferragine¹ - Federico Sánchez Chopa^{1,4} - Laura Beatriz Nadin^{1,4}

Grupo de Fisicoquímica Ambiental, Instituto de Física Arroyo Seco, Facultad de Ciencias Exactas

Roberto Gratton^{2,3}

Karen E. Williams⁵ - José Gere⁴ - Paula Juliarena^{2,3}

- (1): Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires.
- (2): Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires.
- (3): CONICET.
- (4): Becario CONICET.
- (6): Colaborador externo. Facultad de Ciencias Agrarias y Forestales, UNLP.

Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil

Ganancia de peso y eficiencia de utilización de la energía y del nitrógeno consumidos por terneros en pastoreo rotativo.

Objetivo general

- Contribuir al estudio de la relación entre:
 - el consumo,
 - la conducta ingestiva,
 - la eficiencia de utilización de los nutrientes y
 - la ganancia de peso
- En bovinos para carne en sistemas pastoriles a base de pasturas/verdeos de alta calidad

Técnicas de Evaluación Utilizadas

Parámetros medidos		Técnica		
Consumo		<u>Indicadores externos / Internos n- Alcano</u>		
Conducta Ingestiva		Registros de comportamiento ingestivo individual		
Eficiencia de Utilización de los Nutrientes	Digestibilidad	<u>Indicadores externos n-Alcanos</u>		
	Balance de Nitrógeno	<u>Colecta de Heces y Orina</u>		
ios ivatricines	Metano	<u>Colecta de Aire Expirado</u>		
Peso		Pesadas Individuales		

Y

Fertilización con Nitrógeno

Resultados

Parametro		Unidad	Observación		Estadistico	
		Omaaa	Mañana	Tarde	Estauistico	
Comiendo		Minutos	376 ± 63	378 ± 31	NS	
Conducta Ingestiva	1	Rumiando	diarios	473 ± 100	483 ± 44	NS
Consumo de MS		Kg/d	4,85 ± 0,67	4,79 ± 0,47	NS	
		% PV	2,59 ± 0,31	2,52 ± 0,23	NS	
Consumo de MSDi	Consumo de MSDigestible		Kg MSD/d	3,70 ± 0,43	3,72 ± 0,35	NS
	Digestibilidad		MSD/MSC	0,76 ± 0,01	0,76 ± 0,02	NS
	Uso del Nitrógeno	Consumo	g N/kg PV ^{0,75} /d	2,552 ±- 0,462	2,442 ± 0,173	NS
Eficiencia de		Heces		0,674 ± 0,131	0,671 ± 0,101	NS
Utilización de Los Nutrientes		Orina		1,390 ± 0,093	1,549 ± 0,117	*
		Retenido		0,487 ± 0,317	0,222 ± 0,108	NS
	Metano	28/6 al 2/8	mg/l	27,75 ± 4,79	36,00 ± 6,78	*
		3/8 al 8/8		16,37 ± 3,93	19,25 ± 5,32	*
Ganancia de Peso Vivo			Kg d	$0,730 \pm 0,19$	0,790 ± 0,14	NS

CONCLUSIONES

El horario de ingreso a la franja diaria de pastoreo (8:30 vs 14:30) provoca que existan cambios en la composición química del forraje

- Los animales Tarde consumieron una dieta con menor contenido de PB y mayor contenido de CNES que los animales Mañana
- •No afectó el consumo de materia seca o materia seca digestible
- •No afecto el comportamiento ingestivo de los animales.
- •No hubo diferencias entre tratamientos en la cantidad de N retenido.
- •Los animales del tratamiento **Tarde** tuvieron una mayor <u>concentración de metano</u> en el aire expirado/eructado que los del tratamiento **Mañana**
- •Los animales del tratamiento Tarde tuvieron una ganancia diaria de peso levemente mayor que los del tratamiento Mañana (NS)

Y

Fertilización con Nitrógeno

Fertilización con Nitrógeno

100 Kg N/Ha

0 Kg N/Ha

→ ←
Dirección de avance del pastoreo*

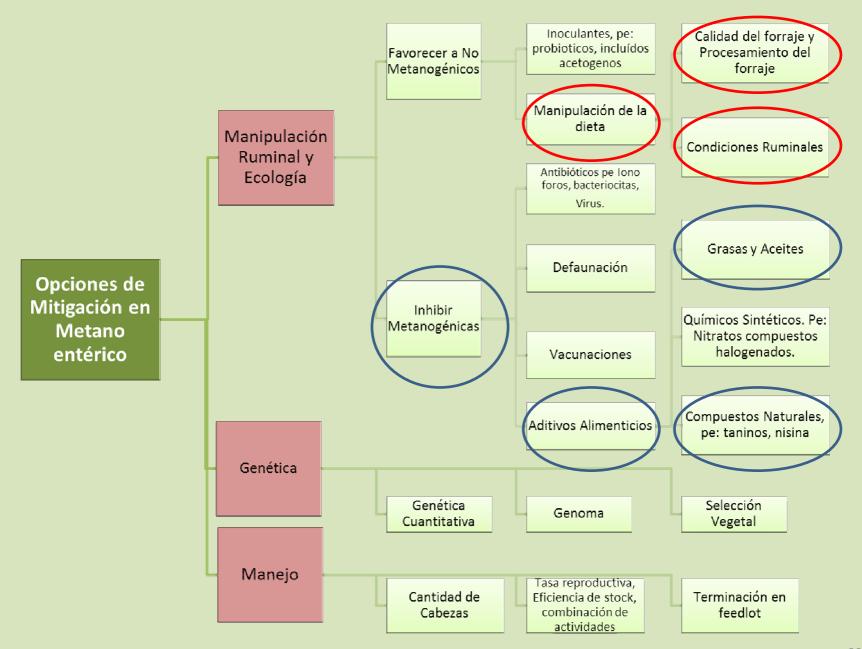
Agua 19-9 hs.

Bloque 1 ----- | ----- Bloque 2

	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		+	
	→ →		← 0	

Periodos de Muestreos					
Duración Total 57 días					
Bloque 2 Bloque 1					
Balance de Nitrógeno	4 al 7 de Octubre	13 al 16 de Octubre			
Emisión de Metano	13 al 19 de Octubre	21 al 31 de Octubre			

Tratamientos		N 0	N 100	RCME	P=
Consumo de agua (kg/d)		7,72	7,39	0,73	0,851
Consumo MS (kg M	IS/d)	6,46	7,51	2,52	0,360
Digestibilidad in viv	vo MS (%)	72,88	74,04	6,51	0,696
Digestibilidad in viv	vo N (%)	59,64	71,37	8,46	0,007
	Balance I	N (mg N/kg PV ^{0,75}):		
Consumo		2,33	3,16	0,678	0,015
Excreción:	Orina	0,91	0,99	0,141	0,167
Excreción.	Heces	0,89	0,90	0,141	0,856
Retención		0,54	1,27	0,566	0,010
	Proporcio	ón del N consumi	do:		
	Orina	0,41	0,32	0,004	0,027
Heces		0,40	0,29	0,005	0,007
Retención		0,19	0,39	0,030	0,010
GDPV (kg/d)		0,710	0,880	0,374	0,026


Emisión diaria de metano						
Tratamientos	N 0 ¹	N 100 ²	RCME*	P=		
Total por animal (g/d)	128,02	162,03	65,61	0,050		
Por unidad de peso vivo (g/kg PV)	0,660	0,790	0,245	0,148		
Por unidad de ganancia de peso (g/g GDPV)	0,200	0,180	0,032	0,726		

Emisión diaria de Metano				
Tratamientos	N 0	N 100		
Emisión Total por animal (g/d)	128,02	162,03		
Consumo MS (kg MS/d)	6,46	7,51		
Emisión por unidad de Consumo (g/Kg MS)	19,8	21,6		
Y _m = Mj Metano / Mj Consumo	0,059	0,064		

CONCLUSIONES

La fertilización con Nitrógeno de la avena provoco cambios en las características físico químicas, morfológicas y nutritivas del forraje.

- •No se detectaron cambios en el consumo de agua, de Materia Seca y de Digestibilidad de la Materia Seca.
- •La digestibilidad *In Vivo* del Nitrógeno, el consumo de Nitrógeno y la retención de Nitrógeno fue mayor en el tratamiento N100.
- •La proporción de Nitrógeno en Orina y Heces del N consumido fue mayor en el Tratamiento NO y la proporción de Nitrógeno Retenido del consumido fue mayor en N100.
- •La ganancia de Peso Vivo fue mayor en N100.
- •La emisión total de Metano fue mayor en N100.
- •La emisión por Kilogramos de peso de los animales y por unidad de ganancia de peso vivo no cambió.
- •El Y mo es significativamente distinto a 0,06 (IPCC)

4 al 7 de octubre | 2011

Mar del Plata | Buenos Aires A R G E N T I N A

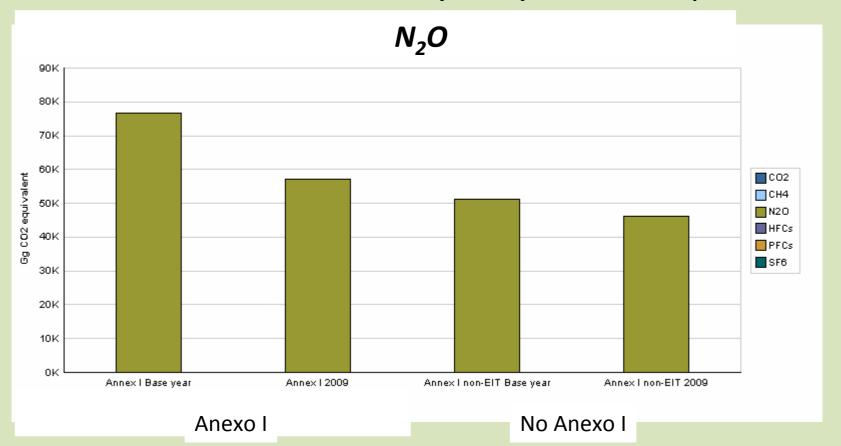
Ciencia y tecnología: pilares del desarrollo ganadero sustentable

Gases de efecto invernadero y calentamiento global. Desafíos para la ganadería.

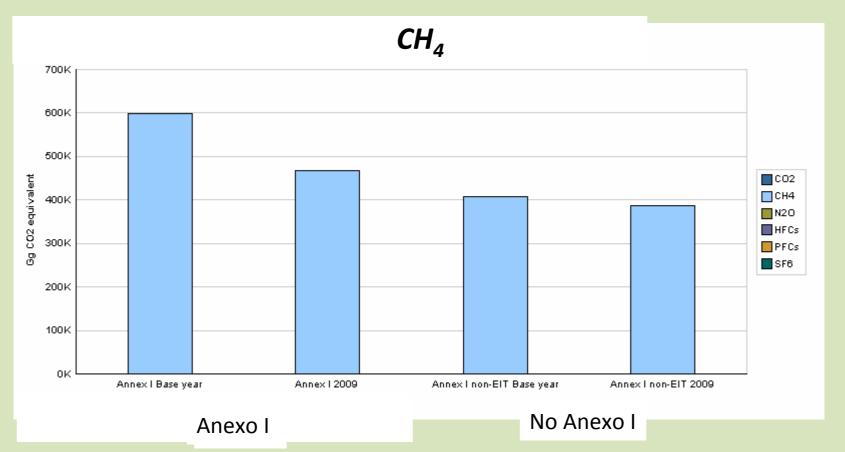
- Muchas Gracias -

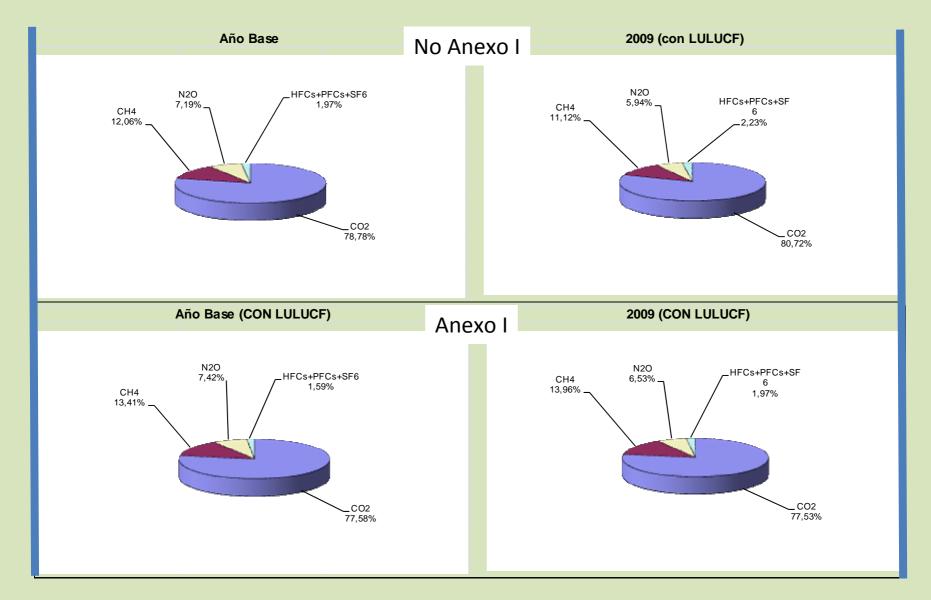
Ing. Agr. Roberto Rubio
PROANVET

rubio@vet.unicen.edu.ar


Director: Horacio Gonda

hgonda@vet.unicen.edu.ar




Emisiones en Pasturas, y Heces y Orina en el campo

Fermentación entérica

Perfil de GEIs Emitidos por Grupos del PK

Consumo

TÉCNICA DE LOS n-ALCANOS

CMS =
$$\frac{DC_{32}}{(C_{32}H / C_{33}H) \times C_{33}F - C_{32}F}$$

- CMS = Consumo de materia seca (kg/día)
 - DC_{32} = dosis de C_{32} (mg/dia)
 - $C_{32}H = C_{32}$ heces (mg/kgMS)
 - $C_{33}H = C_{33} heces(mg/kgMS)$
 - $C_{33}F = C_{33}$ forraje (mg/kgMS)
 - $C_{32}F = C_{32}$ forraje (mg/kgMS)

Conducta Ingestiva

Registros de comportamiento ingestivo individual

- Evaluando durante 24 h
- Movimientos mandibulares dedicados a:
 - Toma de bocados
 - Masticación
 - Rumia
- •Integrar los eventos de pastoreo y de rumia, para cuantificar su duración y momento

Eficiencia de utilización de los nutrientes - <u>Digestibilidad</u>

Por indicadores Externos

$$MF = \frac{DC_{36}}{C_{36}H}$$

- MF = Materia fecal (kg MS/d)
- $DC_{36} = dosis de C_{36} (mg/d)$
- $C_{36}H = C_{36}$ en heces (mg/kgMS)

Eficiencia de utilización de los nutrientes – <u>Balance de Nitrógeno</u>

$$BN = CN - NMF - NO$$

- BN= Balance de N (g N/kg PV^{0,75}/d)
- $CN = Consumo de N (g N/kg PV^{0,75}/d)$
- NMF = N en materia fecal (g $N/kg PV^{0,75}/d$)
- NO = N en orina (g N/kg $PV^{0,75}$)

Eficiencia de utilización de los nutrientes – Emisión de Metano

Colecta de Muestras de Aire

En Muestras de aire Concentración de Metano Concentración de SF₆ Cantidad de Metano Emitido

